A Stoicheiometric Conversion of $CO_2 + CH_4$ into 2 $CO + 2 H_2$ by Microwave Discharge ## Ken-ichi Tanaka,* Jun Okabe, and Kazuo Aomura Department of Chemistry, The Faculty of Engineering, Hokkaido University, Sapporo 060, Japan Microwave discharge caused a mixture of CO₂ and CH₄ to undergo a stoicheiometric conversion into a mixture of CO and H₂, while discharge of CH₄ alone gave C₂H₂ and discharge of CH₄ in Xe yielded solid carbonaceous materials. A plasma stimulated by a radio frequency discharge is an interesting phase in which thermodynamically unfavourable reactions and reactions *via* unusual intermediates can occur. Resources of carbon are being depleted and we will have to develop recycling methods for carbon dioxide as well as for methane. Therefore the conversion of CO₂ and CH₄ into more valuable reagents is an important subject in chemistry. In this brief paper, we report a novel endothermic process $(\Delta H_{\circ}^{+} = +247.27 \text{ kJ mol}^{-1})$, $CO_2 + CH_4 \rightarrow 2 \text{ CO} + 2 \text{ H}_2$, caused by a plasma discharge. The reaction was performed in a closed circulation system (332 ml), where a plasma discharge was stimulated in a 10 mm diameter Pyrex tube using microwave radiation at 2450 MHz. A stable discharge was obtained with a discharge zone of 3.1 ml at a pressure of ca. 5 Torr with 80 W incident power. The products were analysed by gas chromatography with thermal-conductivity (TC) and flameionisation detectors as well as by a Q-pole mass spectrometer. The microwave discharge of methane has been reported to give acetylene as the main product and we obtained the same result (Table 1). The carbon balance in the gas phase was strictly in the form of C_1 — C_4 hydrocarbons; no appreciable deposition of carbon was caused by the discharge. In contrast, if the discharge was applied to a mixture of CH_4 and rare gases such as Ar, Kr, and Xe, methane disappeared rapidly from the gas phase and was efficiently converted into solid carbonaceous materials. A typical result is shown in Table 1 where the discharge was applied for 60 s to Xe (5 Torr) containing ca. 6.3% of CH_4 . The carbon material balance in the gas phase corresponded to only 4% of the initial CH₄, although the conversion of CH₄ computed by $1-[\text{CH}_4]/[\text{CH}_4]_{t=0}$ was as high as 96.3%, indicating that 96% of the initial CH₄ was converted into solid carbonaceous materials. In fact, after the discharge of CH₄ and Xe mixture, when the gas phase was evacuated and a mixture of Xe and H₂ (ca. 20% of H₂) was discharged for 120 s, ca. 91.5% of the deposited carbon was recovered in the form of hydrocarbons, as shown in Table 1. When CO₂ was added to CH₄, however, an entirely different Table 1. Plasma discharge of CH_4 and a mixture of $CH_4 + Xe$. | Discharge | CH4 or H2 | Time | Conversion | | | | <u></u> % | | | | Carbon | |-------------|-----------|------|------------|-----|----------|----------|-----------|----------|----------|-------------|-------------| | phase | in Xe (%) | /s | (%) | CH₄ | C_2H_6 | C_2H_4 | C_2H_2 | C_3H_8 | C_3H_6 | C_4H_{10} | balance (%) | | CH₄ | 100 | 60 | 38.8 | | 24 | 10 | 58 | 3.9 | 3.3 | 0.5 | 100 | | $Xe + CH_4$ | 6.3 | 60 | 96.3 | | 13 | 6 | 81 | 0 | 0 | 0 | 4.0 | | H_2 | 20 | 120 | | 31 | 4.8 | 1.9 | 59 | 2.7 | 1.1 | 0 | 91.5ª | ^a Value indicates percentage of recovered carbon from the deposition. Table 2. Plasma discharge of a mixture of CH₄ and CO₂ (48.9:51.1). | Discharge | Time | Conversion | | Carbonb | | | | | | |---------------|------|--|-------|---------|--------|--------|-----------------|-----------------|-------------| | phase | /min | (%) | H_2 | CO | CO_2 | H_2O | CH ₄ | HC ^a | balance (%) | | $CH_4 + CO_2$ | 4 | 96.5 (CH ₄)
74.6 (CO ₂) | 40.4 | 46.1 | 7.0 | 3.4 | 0.9 | 2.2 | 107.8 | $[^]a$ HC = $C_2H_6 + C_2H_4 + C_2H_2 + C_3H_8 + C_3H_6$. Computed using a TC detector for CO₂, CO, and CH₄, a flame-ionisation detector for the hydrocarbons, and a mass spectrometer for H₂, CO, CO₂, and O₂. reaction was brought about by the discharge. As shown in Table 2, the discharge of a 1:1 mixture of $\rm CO_2$ and $\rm CH_4$ yielded small amounts of hydrocarbons and carbonaceous deposits but gave CO and $\rm H_2$ in stoicheiometric ratio as the main products. The carbon balance exceeds 100%, and is related to inaccuracy in the analysis; the composition was computed by combining the gas chromatographic analyses with TC and flame-ionisation detectors, and a Q-pole type mass spectrometric analysis. Considering the limitations on the accuracy from the combination of the three methods, the carbon balance in the gas phase is quite well established, and it can be concluded that during discharge in the presence of $\rm CO_2$ there was no deposit of carbonaceous materials. This unique stoicheiometric reaction may be caused by reaction of CH_4 fragments or ions with an oxygen atom or ion from CO_2 in the plasma which may prohibit the deposition of carbonaceous materials as well as the formation of hydrocarbons, and lead to CO and a small amount of water, equations (1), (2), and (3). $$CH_4 \longrightarrow Hydrocarbons, mainly C_2H_2$$ (1) $$Xe + CH_4$$ —W Solid carbonaceous deposit —W Hydrocarbons (2) $$CO_2 + CH_4 \longrightarrow 2 CO + 2 H_2$$ (3) The authors are indebted to the General Petroleum Co. (Tokyo, Japan) for partial financial support of this work. Received, 27th April 1982; Com. 481 ## References R. L. McCarthy, J. Chem. Phys., 1954, 22, 1360; Y. Kawahara, J. Phys. Chem., 1969, 73, 1648.